6.3: Xenon Tetrafluoride (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    149262
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Xenon tetrafluoride is a chemical compound with chemical formula \(\ce{XeF4}\). It was the first discovered binary compound of a noble gas. It is produced by the chemical reaction of xenon with fluorine, \(\ce{F2}\), according to the chemical equation:

    \[\ce{Xe + 2 F2 → XeF4} \nonumber \]

    The infrared spectrum of \(\ce{XeF4}\) has absorptions at 161, 291, and 586 cm-1 (two bends, one stretch), while the Raman spectrum has peaks at 218, 524, and 554 cm-1 (one bend, two stretches). Is its molecular structure tetrahedral or square planar?

    Tetrahedral Symmetry - Td

    \[ \begin{matrix} \begin{array} E & E & C_3 & C_2 & & S_4 & \sigma \end{array} & ~ \\ \text{CIh} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 \\ 2 & -1 & 2 & 0 & 0 \\ 3 & 0 & -1 & 1 & -1 \\ 3 & 0 & -1 & -1 & 1 \end{bmatrix} & \begin{array} \text{A}_1: ~ x^2 + y^2 + z^2 \\ \text{A}_2 \\ \text{E}:~2z^2-x^2y^2, x^2-y^2 \\ \text{T}_1:~(R_x,~R_y,~R_z) \\ \text{T}_2: \text{ (x, y, z)(xy, xz, yz)} \end{array} & \text{Td} = \begin{bmatrix} 1 \\ 8 \\ 3 \\ 6 \\ 6 \end{bmatrix} & \Gamma_{uma} = \begin{bmatrix} 5 \\ 2 \\ 1 \\ 1 \\ 3 \end{bmatrix} \end{matrix} \nonumber \]

    \[ \begin{matrix} A_1 = (C_{Td}^T)^{<1>} & A_2 = ( C_{Td}^T )^{<2>} & E = ( C_{Td}^T )^{<3>} & T_1 = (C_{Td}^T )^{<4>} \\ T_2 = (C_{Td}^T )^{<5.} & \Gamma_{tot} = \overrightarrow{ \Gamma_{uma} T_2} & h = \sum Td & \Gamma_{tot}^T = \begin{pmatrix} 15 & 0 & -1 & -1 & 3 \end{pmatrix} \end{matrix} \nonumber \]

    \[ \begin{matrix} \Gamma_{vib} = \Gamma_{tot} - T_1 - T_2 & \text{Vib}_i = \frac{ \sum \overrightarrow{ [Td (C Td^T)^{<i>} \Gamma_{vib}]}}{h} & \text{Vib} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 2 \end{bmatrix} \begin{array} \text{A}_1:~ x^2 + y^2 +z^2 \\ \text{A}_2 \\ \text{E: } 2z^2 -x^2 - y^2, x^2 - y^2 \\ \text{T}_1:~ (R_x,~R_y,~R_z) \\ \text{T}_2:~ (x,~y,~z)(xy,~xz,~yz) \end{array} \end{matrix} \nonumber \]

    This analysis predicts two IR active modes (2T2) and four Raman active modes (A1, E, 2T2). It also suggests that the IR and Raman should have the two T2 modes in common. Thus, tetrahedral geometry is not consistent with the spectroscopic data. Further detail can be obtained by noting that the stretching vibrations have the same symmetry properties as the chemical bonds. This allows the vibrational modes to be decomposed further into the symmetry of the stretches and bends.

    Square Planar Geometry - D4H

    \[ \begin{matrix} \begin{array} E & & E & C_4 & C_2 & C_2' & C_2"& i& S_4& & \sigma_h & \sigma_v & \sigma_v & \end{array} & ~ \\ \text{CIh} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 \\ 2 & 0 & -2 & 0 & 0 & 2 & 0 & -2 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1\\ 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 2 & 0 & -2 & 0 & 0 & -2 & 0 & 2 & 0 & 0 \end{bmatrix} & \begin{array} \text{A1g: }x^2 + y^2 + z^2 \\ \text{A2g: Rz} \\ \text{B1g: } x^2-y^2\\ \text{B2g: xy} \\ \text{Eg: (Rx, Ry), xz, yz)} \\ \text{A1u} \\ \text{A2u: z} \\ \text{B1u} \\ \text{B2u} \\ \text{Eu: (x, y)} \end{array} & \text{D4h} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \end{bmatrix} & \Gamma_{uma} = \begin{bmatrix} 5 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 1 \\ 5 \\ 3 \\ 1 \end{bmatrix} & \Gamma_{bonds} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 4 \\ 2 \\ 0 \end{bmatrix} \end{matrix} \nonumber \]

    \[ \begin{matrix} \text{A}_{1g} = ( \text{C}_{D4h}^T )^{<1>} & \text{A}_{2g} = ( \text{C}_{D4h}^T )^{<2>} & \text{B}_{1g} = ( \text{C}_{D4h}^T )^{<3>} & \text{B}_{2g} = ( \text{C}_{D4h}^T )^{<4>} & \text{E}_g = ( \text{C}_{D4h}^T )^{<5>} \\ \text{A}_{1u} = ( \text{C}_{D4h}^T )^{<6>} & \text{A}_{2u} = ( \text{C}_{D4h}^T )^{<7>} & \text{B}_{1u} = ( \text{C}_{D4h}^T )^{<8>} & \text{B}_{2u} = ( \text{C}_{D4h}^T )^{<9>} & \text{E}_u = ( \text{C}_{D4h}^T )^{<10>} \end{matrix} \nonumber \]

    \[ \begin{matrix} h = \sum D4h & \Gamma_{trans} = A_{2u} + E_u & \Gamma_{rot} = A_{2g} + E_g & \Gamma_{tot} = \overrightarrow{( \Gamma_{uma} \Gamma_{trans})} \end{matrix} \nonumber \]

    \[ \begin{matrix} \Gamma_{vib} = \Gamma_{tot} - \Gamma_{trans} - \Gamma_{rot} & \Gamma_{stretch} = \Gamma_{bonds} & \Gamma_{bend} = \Gamma_{vib} - \Gamma_{stretch} & i = 1 .. 10 \end{matrix} \nonumber \]

    \[ \begin{matrix} \text{Vib}_i = \frac{ \sum \overrightarrow{[ D4h ( C_{D4h}^T )^{<i>} \Gamma_{vib}]}}{h} & \text{Stretch}_i = \frac{ \sum \overrightarrow{[ D4h ( C_{D4h}^T )^{<i>} \Gamma_{stretch}]}}{h} & \text{Bend}_i = \frac{ \sum \overrightarrow{[ D4h ( C_{D4h}^T )^{<i>} \Gamma_{bend}]}}{h} \end{matrix} \nonumber \]

    \[ \begin{matrix} \text{Vib} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 2 \end{bmatrix} \begin{array} \text{A1g: }x^2 + y^2 + z^2 \\ \text{A2g: Rz} \\ \text{B1g: } x^2-y^2\\ \text{B2g: xy} \\ \text{Eg: (Rx, Ry), xz, yz)} \\ \text{A1u} \\ \text{A2u: z} \\ \text{B1u} \\ \text{B2u} \\ \text{Eu: (x, y)} \end{array} & \Gamma_{uma} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{array} \text{A1g: }x^2 + y^2 + z^2 \\ \text{A2g: Rz} \\ \text{B1g: } x^2-y^2\\ \text{B2g: xy} \\ \text{Eg: (Rx, Ry), xz, yz)} \\ \text{A1u} \\ \text{A2u: z} \\ \text{B1u} \\ \text{B2u} \\ \text{Eu: (x, y)} \end{array} & \Gamma_{bonds} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \begin{array} \text{A1g: }x^2 + y^2 + z^2 \\ \text{A2g: Rz} \\ \text{B1g: } x^2-y^2\\ \text{B2g: xy} \\ \text{Eg: (Rx, Ry), xz, yz)} \\ \text{A1u} \\ \text{A2u: z} \\ \text{B1u} \\ \text{B2u} \\ \text{Eu: (x, y)} \end{array} \end{matrix} \nonumber \]

    This analysis predicts three IR active modes (A2u, 2Eu) and three Raman active modes (A1g, B1g, B2g). It also indicates that there are no coincidences between the IR and Raman spectra. Thus, square planar geometry is consistent with the spectroscopic data. Examining the symmetry of the stretches and bends adds further support to this conclusion.

    This analysis also predicts two Raman (A1g, B1g) and one IR (Eu) active stretches, and two IR (A2u, Eu) and one Raman (B2g) active bends. This is also consistent with the experiemental data.

    References

    • J. Am. Chem. Soc. 1963, 85, 1927;
    • J. Phys. Chem. 1971, 54, 5247.
    6.3: Xenon Tetrafluoride (2024)
    Top Articles
    UKSH Universitätsklinikum Schleswig-Holstein
    Glasses Places That Accept Medicaid
    Ohio Houses With Land for Sale - 1,591 Properties
    Cintas Pay Bill
    ³µ¿Â«»ÍÀÇ Ã¢½ÃÀÚ À̸¸±¸ ¸íÀÎ, ¹Ì±¹ Ķ¸®Æ÷´Ï¾Æ ÁøÃâ - ¿ù°£ÆÄ¿öÄÚ¸®¾Æ
    Grange Display Calculator
    Us 25 Yard Sale Map
    Needle Nose Peterbilt For Sale Craigslist
    Slay The Spire Red Mask
    Tugboat Information
    The Blind Showtimes Near Showcase Cinemas Springdale
    Thotsbook Com
    Lenscrafters Huebner Oaks
    Leeks — A Dirty Little Secret (Ingredient)
    Michaels W2 Online
    Hood County Buy Sell And Trade
    Learn2Serve Tabc Answers
    Condogames Xyz Discord
    What is Rumba and How to Dance the Rumba Basic — Duet Dance Studio Chicago | Ballroom Dance in Chicago
    Eva Mastromatteo Erie Pa
    Kp Nurse Scholars
    White Pages Corpus Christi
    Geometry Review Quiz 5 Answer Key
    The Ultimate Guide to Extras Casting: Everything You Need to Know - MyCastingFile
    Food Universe Near Me Circular
    Kohls Lufkin Tx
    January 8 Jesus Calling
    Things to do in Pearl City: Honolulu, HI Travel Guide by 10Best
    Why comparing against exchange rates from Google is wrong
    Purdue Timeforge
    Wisconsin Volleyball Team Leaked Uncovered
    Gyeon Jahee
    Log in or sign up to view
    Craigs List Stockton
    One Main Branch Locator
    Cygenoth
    WorldAccount | Data Protection
    Shuaiby Kill Twitter
    Mytime Maple Grove Hospital
    062203010
    Trivago Anaheim California
    Gotrax Scooter Error Code E2
    Scythe Banned Combos
    Brother Bear Tattoo Ideas
    Frequently Asked Questions
    303-615-0055
    Argus Leader Obits Today
    Brutus Bites Back Answer Key
    Research Tome Neltharus
    Diamond Desires Nyc
    Hcs Smartfind
    32 Easy Recipes That Start with Frozen Berries
    Latest Posts
    Article information

    Author: Rob Wisoky

    Last Updated:

    Views: 6411

    Rating: 4.8 / 5 (48 voted)

    Reviews: 95% of readers found this page helpful

    Author information

    Name: Rob Wisoky

    Birthday: 1994-09-30

    Address: 5789 Michel Vista, West Domenic, OR 80464-9452

    Phone: +97313824072371

    Job: Education Orchestrator

    Hobby: Lockpicking, Crocheting, Baton twirling, Video gaming, Jogging, Whittling, Model building

    Introduction: My name is Rob Wisoky, I am a smiling, helpful, encouraging, zealous, energetic, faithful, fantastic person who loves writing and wants to share my knowledge and understanding with you.